HERON TRILATERALS
 BHASKARA EQUATIONS CONTINUED FRACTIONS

HEIN VAN WINKEL

Contents

0. Wandering in the Wonderful world of Numbers 2
1. Heron trilaterals 3
2. Incircle radius of heron trilaterals 8
2.1. \quad SQE (p is a perfect square and c is even) 9
2.2. \quad SQO (p is a perfect square and c is odd) 9
2.3. NQE (p is not a perfect square and c is even) 10
2.4. NQO (p is not a perfect square and c is odd) 12
2.5. heron(c, x) 13
3. Observations - Questions - Remarks 14
3.1. More obtuse-angled than acute-angled trilaterals for small area's 14
3.2. $c=a+b$ with $a \cdot b$ is a perfect square 14
3.3. How many singulars for $\left(c, s_{a}\right)$, if $s_{a} s_{b}$ is a perfect square? 15
3.4. Are there Heron tirangles, that are singulars to 2 or 3 sides? 15
3.5. How many series for (c, p), when p is not a perfect square? 16
3.6. Some results with heroncx 16
3.7. Some strong relations between r and convergents of $\sqrt{s_{a} s_{b}}$ 17
3.8. heroncx $(50,7)$ 17
References 18
Appendix A. heroncx(c,x) 19
Appendix B. tables 24

0 . Wandering in the Wonderful world of Numbers

Last winter I was on a wintering-holiday in India. And if you can point your antennas on it, you will find history of mathematics everywhere. At the observatories in Jaipur and Varanasi, at a temple with an ancient magic square in Khajuraho, you have the feeling of walking in the footsteps of historical mathematicians. After all, they were in many ways arithmatic pioneers in India. In the time of the European mathematicians Euler, de Fermat, Mersenne, and Huygens, all kinds of arithmetic properties were rediscovered. Some have been proven, others are still sources of research and conjecture.
One of the areas of these ancient times concerns Heron triangles, triangles with sides and area equal to integers. Heron is the Greek hero of the story and Bhaskara and Brahmagupta are the heroes of India.
The question that came to my mind is, "Would there be a tetrahedron with four Heron triangles and integer volume?" 9. And then the next question was: "Are there enough triangles with sides that fit together to make such a tetrahedron at all?"
In searching this matter I came across the concept of Heron trilaterals. (See figure 3). I call the part of the figure of the side AB the Heron skeleton. (See figure 4). The tangent point C_{0} of the inner circle lies on the side $A B$. I have made a program with SageMath. It needs input $c=A B$ and $x=A C_{0}$. It gives as ouput the possible Heron triangles, which can be constructed on the Heron skeleton (c, x).
I looked for Heron triangles with a side of given length and I found a wonderful world of numbers. The world of positive integers, of the rational numbers, of the quadratic numbers, of Bhaskara's equations, once erroneously called Pell's equations, of the (finite and periodic) continued fractions and their convergents.

Section 1 provides an introduction to Heron trilaterals. Because I will not be concerned with degeneracies, I will only use the set $\mathbb{N}=\mathbb{Z}^{+}$for the positive integers. After all, 0 has ever been added. Section 2 follows the construction of the heroncx program in SageMath. The listing of the program is included in Appendix A. Section 3 contains some findings when playing with heroncx. It contains enough questions to expand this article with some chapters on continued fractions and solutions of the Bhaskara equation $x^{2}-d y^{2}=c^{2}$ from sections 2.3 and 2.4. and who knows what else.

Hein van Winkel.

Figure 1. Heron triangle

Notations. The sidelengths of $B C, A C, A B$ are respectively a, b, c. The sizes of the interior angles of $\triangle A B C$ are $\alpha=\angle A, \beta=\angle B, \gamma=\angle C$. The tangentpoints of the incircle with the sides a, b, c of the triangle are respectively A_{0}, B_{0}, C_{0}. The lenghts of the tangents from the vertices to these tangentpoints are $A B_{0}=A C_{0}=s_{a}, B A_{0}=B C_{0}=s_{b}, C A_{0}=$ $C B_{0}=s_{c}$. The sum of these six tangents is the perimeter of the triangle. The half perimeter is the first letter s of semi-perimeter. The incircle has midpoint I and radius r. The letter F is used for the size of the area of the triangle.

Definition 1.1. $\triangle A B C$ is a Heron triangle if $a, b, c, F \in \mathbb{N}$.
Some basic properties without proof:
Proposition 1.2. $s_{a}=s-s_{b}-s_{c}=s-a, s_{b}=s-b, s_{c}=s-c$
Proposition 1.3. $s=s_{a}+s_{b}+s_{c}$
Proposition 1.4 (Heron's formula). $F=\sqrt{s \cdot s_{a} \cdot s_{b} \cdot s_{c}}$
Proposition 1.5. $F=r \cdot s$
Proposition 1.6. $r^{2} s=s_{a} \cdot s_{b} \cdot s_{c} \Leftrightarrow r^{2}\left(s_{a}+s_{b}+s_{c}\right)=s_{a} \cdot s_{b} \cdot s_{c}$
Proposition 1.7. $\frac{s_{a}}{r}+\frac{s_{b}}{r}+\frac{s_{c}}{r}=\frac{s_{a}}{r} \cdot \frac{s_{b}}{r} \cdot \frac{s_{c}}{r}$
Proposition 1.8. In a Heron tirangle each off the $a, b, c, s_{a}, s_{b}, s_{c}, s, F \in \mathbb{N}$ and $r \in \mathbb{Q}$.

Adding the excircle with centre I_{c} at the side c of $\triangle A B C$ gives figure 2 . The tangent points with the sides a, b, c or their extentions are respectively A_{c}, B_{c}, C_{c}, and the exradius $r_{c}=I_{c} C_{c}$.

Figure 2. Excircle I_{c}

Another set of basic properties (some without proof):
Proposition 1.9. $C A_{c}=s$.

Proof: $C A_{c}+C B_{c}=2 * C A_{c}=a+b+c=2 s \Rightarrow C A_{c}=s$.
Proposition 1.10. $A B_{c}=A C_{c}=s-b=s_{b}, B A_{c}=B C_{c}=s_{a}$
Proposition 1.11. $F=r_{c} s_{c}$
Proof: $\tan \left(\frac{\gamma}{2}\right)=\frac{r_{c}}{s}=\frac{r}{s_{c}} \Rightarrow r_{c} s_{c}=r s=F$.
Proposition 1.12. $r r_{c}=s_{a} s_{b}$
Proof : $A I \perp A I_{c} \Rightarrow \frac{s_{b}}{r_{c}}=\frac{r}{s_{a}} \Leftrightarrow r r_{c}=s_{a} s_{b}$
Proposition 1.13. $r r_{a} r_{b} r_{c}=F^{2}$.
Proof : According to 1.11 is $r r_{a} r_{b} r_{c}=\frac{F}{s} \frac{F}{s_{a}} \frac{F}{s_{b}} \frac{F}{s_{c}}$ and according to Heron's formula is $\sqrt{s \cdot s_{a} \cdot s_{b} \cdot s_{c}}=F$. Then it follows that $r r_{a} r_{b} r_{c}=\frac{F}{s} \frac{F}{s_{a}} \frac{F}{s_{b}} \frac{F}{s_{c}}=F^{4} / F^{2}=F^{2}$ is.

Proposition 1.14. $F=\frac{r r_{a} r_{b} r_{c}}{r s}=\frac{r_{a} r_{b} r_{c}}{s}$

Proposition 1.15. $r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}=s^{2}$
Proof : $r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}=r_{a} r_{b} r_{c}\left(\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}\right)=s F\left(\frac{s_{a}}{F}+\frac{s_{b}}{F}+\frac{s_{c}}{F}\right)=s^{2}$
Definition 1.16. A Heron trilateral is a configuration of three lines a, b and c, intersecting each other in three different points A, B, C such that $\triangle A B C$ is a Heron triangle. If there is no confusion the letters a, b, c are used as the lines and as the lenght of the sides of the triangle. (See figure 3)

Figure 3. Heron trilateral

Notations. The incircle of $\triangle A B C$ with center I is tangent at the points A_{0}, B_{0}, C_{0} on the side a, b, c respectively. The excircle, tangent at side a, with center I_{a} is tangent in the points A_{a}, B_{a}, C_{a} at the side a, b, c respectively. The radius of this circle is r_{a}.
The length of the tangent from C to the excircle with center I_{c} is defined to be the negative number $s_{c}^{\prime}=-s$ and the length of the tangents from A and B at circle I_{c} are $s_{a}^{\prime}=s_{b}$ and $s_{b}^{\prime}=s_{a}$ respectively. By definition is $s^{\prime}=s_{a}^{\prime}+s_{b}^{\prime}+s_{c}^{\prime}$.

Propositon 1.17. $s^{\prime}=-s_{c}$ and $r^{\prime}=-r$.
Proof : $s^{\prime}=s_{a}^{\prime}+s_{b}^{\prime}+s_{c}^{\prime}=s_{b}+s_{a}-s=-s_{c}$.
From $F=r \cdot s=r^{\prime} \cdot s^{\prime}$ follows $r^{\prime}=\frac{r \cdot s}{s^{\prime}}=\frac{r \cdot s}{-s_{c}}=-r_{c}$.

Proposition 1.18. With the notations of s^{\prime} and s_{a}^{\prime}, heron's formel is still valid. Proof : $F=\sqrt{s^{\prime} \cdot s_{b}^{\prime} \cdot s_{a}^{\prime} \cdot s_{c}^{\prime}}=\sqrt{-s_{c} \cdot s_{a} \cdot s_{b} \cdot-s}=\sqrt{s \cdot s_{a} \cdot s_{b} \cdot s_{c}}$

Figure 4. Heron skeleton
Definition 1.19. After removing quite a bit from the figures in this section a so-called Heron skeleton remains. It consists of the side $A B$ with length c of $\triangle A B C$ and the radius $I C_{0}$ of the incircle with their tangent point. The length of $A C_{0}, B C_{0}, C_{0} I$ is s_{a}, s_{b}, r respectively as in the foregoing. The length s_{a} and s_{b} are in \mathbb{N}. The length of r is in \mathbb{Q}. In section 2 follows an investigation of the possible values of r such that the skeleton can be extended to an heron trilateral.

Definition 1.20. Let M be the center of the line segment $A_{0} A_{c}$. Then by definition $C M=t_{c}$.

Proposition 1.21. $t_{c}=s_{c}+c / 2=\left(s+s_{c}\right) / 2$.
Proof: $C M=t_{c}=s_{c}+\frac{1}{2}\left(s-s_{c}\right)=\frac{1}{2}\left(s+s_{c}\right)=\left(s_{a}+s_{b}+2 s_{c}\right) / 2=\left(c+2 s_{c}\right) / 2=s_{c}+c / 2$.
Proposition 1.22. If c is even then $t_{c} \in \mathbb{N}$. If $c=\operatorname{odd}$ then $t_{c}+\frac{1}{2} \in \mathbb{N}$
Proof. This follows immediately from 1.21.
Theorem 1.23 If $\left(t_{c}, s_{a}, s_{b}\right)$ describes the Heron trilateral (a, b, c) then $\left(-t_{c}, s_{a}, s_{b}\right)$ describes the same Heron trilateral $H(a, b, c)$.
Proof.
$s_{c}=t_{c}-c / 2$ by (1.21) and
$s=s_{c}+c=s_{c}+c / 2+c / 2=t_{c}+c / 2$.
For tangents at the excircle I_{c} holds:
$s_{a}^{\prime}=s_{b}$
$s_{b}^{\prime}=s_{a}$
$s_{c}^{\prime}=-s=-\left(t_{c}+c / 2\right)=\left(-t_{c}\right)-c / 2$
$s^{\prime}=-s_{c}=-\left(t_{c}-c / 2\right)=\left(-t_{c}\right)+c / 2$.
And this proves that $\left(-t_{c}, s_{a}, s_{b}\right)$ describes the same Heron trilateral.
Proposition 1.24. The inradius of an heron-skeleton is less than $\sqrt{s_{a} s_{b}}$.
Proof. Let the skeleton in figure 5 have $C D=\sqrt{A C \cdot C B}=\sqrt{s_{a} s_{b}}$. Then $A D \perp B D$. Then

Figure 5. limit figure
the tangentpoints E and F are collinear with D and the tangents $A F$ and $B E$ are parallel and there is no triangle. When $C D<\sqrt{s_{a} s_{b}}$ the tangents intersect each other in a point at the same side of $A B$ as point D does and the circle is the incircle. When $C D>\sqrt{s_{a} s_{b}}$ the tangents intersect each other in a point at the other side of $A B$ as point D does and the circle is the excircle at side $A B$ of the triangle.
REMARK : By proposition 1.12 is $r r_{c}=s_{a} s_{b}$.

2. INCIRCLE RADIUS OF HERON TRILATERALS

This section explores the possible values of the inradius r such that the skeleton of figure 4 is a Heron skeleton. The solution to the problem is highly dependent on the values of $p=s_{a} s_{b}$ and $c=s_{a}+s_{b}$.
Use is made of some of the statements ($\mathbf{C 1} \mathbf{-} \mathbf{C 6}$) formulated in the article by Keith Conrad [3], 4] :

- Theorem C. 1 ([3]Theorem 4.1). If $X^{2}-d Y^{2}=1$ has solutions (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ then the coefficients of $(x+y \sqrt{d})\left(x^{\prime}+y^{\prime} \sqrt{d}\right)$ are also a solution.
- Corollary C. 2 ([3]Corollary 4.2).. If $X^{2}-d Y^{2}=1$ has a solution (x, y) then the coefficients of $(x+y \sqrt{d})^{n}$ are also a solution for all $n \in \mathbb{Z}$. In particular, this Pell equation has infinitely many solutions if it has a nontrivial solution.
- Theorem C. 3 ([3]Theorem 5.3).. Assume $x^{2}-d y^{2}=1$ has a solution in positive integers and let $\left(x_{1}, y_{1}\right)$ be such a solution where y_{1} is minimal. Then all solutions to $x^{2}-d y^{2}=1$ in integers are, op to sign, generated from $\left(x_{1}, y_{1}\right)$ by taking powers of $x_{1}+y_{1} \sqrt{d}$:

$$
x+y \sqrt{d}= \pm\left(x_{1}+y_{1} \sqrt{d}\right)^{n}
$$

for some $n \in \mathbb{Z}$ and some sign.

- Theorem C. 4 ([4] Theorem 2.3). (Lagrange, 1768). For any positive integer d that is not a square, the equation $x^{2}-d y^{2}=1$ has a nontrivial solution.
- Theorem C. 5 ([4] Theorem 3.3).. Fix $u=a+b \sqrt{d}$ where $a^{2}-d b^{2}=1$ with a and b in \mathbb{Z}^{+}. For each $n \in \mathbb{Z}-\{0\}$, every solution of $x^{2}-d y^{2}=n$ is a Pell multiple of a solution (x, y) where

$$
|x| \leq \sqrt{|n| u} \text { and }|y| \leq \sqrt{|n| u} / \sqrt{d}
$$

- Corollary C. 6 ([4] Corollary 3.4). . For any generalized Pell equation $x^{2}-d y^{2}=n$ with $n \neq 0$ there is a finite set of solutions such that every solution is a Pell multiple of one of these solutions.

Heron's formula $F^{2}=s_{a} s_{b} s_{c} s=\left(s_{a} s_{b}\right) s_{c}\left(s_{c}+s_{a}+s_{c}=\right.$

$$
\begin{equation*}
F^{2}=p s_{c}\left(s_{c}+c\right) \tag{1}
\end{equation*}
$$

Solving this equation depends on the values of p and c. The different solutions are described in the following subsections. Appendix A contains the program listing of the function heroncx with input respectively the length of $A B$ and $A C_{0}$ in figure 4 and output the heron trilaterals in the format (inradius, $\mathrm{a}, \mathrm{b}, \mathrm{c}$, area).

2.1. SQE (p is a perfect square and c is even). .

Let $p_{1}^{2}=p$. From equation 1 follows $p_{1}^{2}=p\left|F^{2} \Rightarrow p_{1}\right| F \Rightarrow F=p_{1} B$ with $B \in \mathbb{N}$ Let $c_{0}=c / 2 \Rightarrow t_{c}=s_{c}+c_{0}\left(t_{c} \in \mathbb{N}\right)$.
After substitutions and some math equation 1 becomes

$$
\begin{align*}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow p_{1}^{2}\left(s_{c}^{2}+2 s_{c} c_{0}\right)=p_{1}^{2} B^{2} \\
& \Leftrightarrow s_{c}^{2}+2 s_{c} c_{0}=B^{2} \\
& \Leftrightarrow\left(s_{c}+c_{0}\right)^{2}=B^{2}+c_{0}^{2} \\
t_{c}^{2} & -B^{2}=c_{0}^{2} \tag{2}
\end{align*}
$$

Solving equation (2) in \mathbb{N} gives:

$$
\begin{gathered}
\left(t_{c}+B\right)\left(t_{c}-B\right)=c_{0}^{2} \Leftrightarrow t_{c}+B=d_{1} \wedge t_{c}-B=d_{2} \\
t_{c}=\frac{d_{1}+d_{2}}{2}=\frac{d_{1}^{2}+c_{0}^{2}}{2 d_{1}} \wedge B=\frac{d_{1}-d_{2}}{2}=\frac{d_{1}^{2}-c_{0}^{2}}{2 d_{1}}
\end{gathered}
$$

with ($d_{1} d_{2}=c_{0}^{2}$), $d_{1}>d_{2}>0$ and d_{1} and d_{2} must have the same parity, because their sum and difference must be divisible by 2 .
The solution $\left(t_{c}, B\right)$ gives $s_{c}+c_{0}=t_{c}$ and $F=p_{1} B$ and

$$
\left\{\begin{array}{ccl}
s_{c}=t_{c}-c_{0} & =\frac{d_{1}^{2}+c_{0}^{2}}{2 d_{1}}-c_{0} & =\frac{\left(d_{1}-c_{0}\right)^{2}}{2 d_{1}} \tag{3}\\
s=t_{c}+c_{0} & =\frac{d_{1}^{2}+c_{0}^{2}}{2 d_{1}}+c_{0} & =\frac{\left(d_{1}+c_{0}\right)^{2}}{2 d_{1}} \\
F=p_{1} B & =p_{1} \cdot \frac{d_{1}^{2}-c_{0}^{2}}{2 d_{1}} & \\
r=\frac{p_{1} B}{t_{c}+c_{0}} & =p_{1} \cdot \frac{d_{1}^{2}-c_{0}^{2}}{2 d_{1}} \cdot \frac{2 d_{1}}{\left(d_{1}+c_{0}\right)^{2}} & =p_{1} \cdot \frac{d_{1}-c_{0}}{d_{1}+c_{0}}
\end{array}\right.
$$

Example 2.1 sqe with $c=10, p=9$, equivalent $s_{a}=1, s_{b}=9$.

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow 9\left(s_{c}^{2}+10 s_{c}\right)=9 B^{2} \\
& \Leftrightarrow t_{c}^{2}-B^{2}=25
\end{aligned}
$$

d_{1}	d_{2}	t_{c}	B	s_{c}	s	a	b	c	F	r	r_{a}	r_{b}	r_{c}
25	1	13	12	8	18	17	9	10	36	2	36	4	$\frac{9}{2}$

2.2. SQO (p is a perfect square and c is odd). .

Let $p_{1}^{2}=p$. From equation 1 follows $p_{1}^{2}=p\left|F^{2} \Rightarrow p_{1}\right| F \Rightarrow F=p_{1} B$ with $B \in \mathbb{N}$ $t_{c}=s_{c}+c / 2 \Rightarrow 2 t_{c}=2 s_{c}+c$ with $2 t_{c} \in \mathbb{N} \wedge t_{c} \notin \mathbb{N}$
After substitutions and some math equation 1 becomes

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow p_{1}^{2}\left(s_{c}^{2}+s_{c} c\right)=p_{1}^{2} B^{2} \\
& \Leftrightarrow s_{c}^{2}+c \cdot s_{c}=B^{2} \Leftrightarrow 4 s_{c}^{2}+4 c \cdot s_{c}=4 B^{2} \\
& \Leftrightarrow 4 s_{c}^{2}+4 c \cdot s_{c}+c^{2}=4 B^{2}+c^{2} \Leftrightarrow\left(2 t_{c}\right)^{2}=(2 B)^{2}+c^{2}
\end{aligned}
$$

With $2 t_{c}=X$ odd and $2 B=Y$ even

$$
\begin{equation*}
\Leftrightarrow X^{2}-Y^{2}=c^{2} \tag{4}
\end{equation*}
$$

Solving equation (4) in \mathbb{N} gives:

$$
\begin{array}{r}
(X+Y)(X-Y)=c^{2} \Leftrightarrow X+Y=d_{1} \wedge X-Y=d_{2} \\
X=\frac{d_{1}+d_{2}}{2} \wedge Y=\frac{d_{1}-d_{2}}{2}
\end{array}
$$

with $d_{1} d_{2}=c^{2}, d_{1}>d_{2}>0$. Because $d_{1} d_{2}=c^{2}$ is odd, d_{1} and d_{2} are both odd and X, Y must be in \mathbb{N}..
The solution $(X, Y)=\left(2 t_{c}, 2 B\right)$ gives
$t_{c}=X / 2=\frac{d_{1}+d_{2}}{4}=\frac{d_{1}+\frac{c^{2}}{d_{1}}}{4}=\frac{d_{1}^{2}+c^{2}}{4 d_{1}}$ and
$B=\frac{Y}{2}=\frac{d_{1}-d_{2}}{4}=\frac{d_{1}-\frac{c^{2}}{d_{1}}}{4}=\frac{d_{1}^{2}-c^{2}}{4 d_{1}}$.
The solution $\left(t_{c}, B\right)$ gives :

$$
\left\{\begin{array}{cl}
s_{c}=t_{c}-\frac{c}{2} & =\frac{d_{1}^{2}+c^{2}}{4 d_{1}}-\frac{c}{2}=\frac{\left(d_{1}-c\right)^{2}}{4 d_{1}} \tag{5}\\
s=t_{c}+\frac{c}{2} & =\frac{d_{1}^{2}+c^{2}}{4 d_{1}}+\frac{c}{2}=\frac{\left(d_{1}+c\right)^{2}}{4 d_{1}} \\
F=p_{1} B & =p_{1} \cdot \frac{d_{1}^{2}-c^{2}}{4 d_{1}} \\
r=p_{1} \cdot \frac{d_{1}^{2}-c^{2}}{4 d_{1}} \cdot \frac{4 d_{1}}{\left(d_{1}+c\right)^{2}} & =p_{1} \cdot \frac{d_{1}-c}{d_{1}+c}
\end{array}\right.
$$

Example 2.2 sqo with $c=13, p=36$, equivalent $s_{a}=4, s_{b}=9$.

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow 36\left(s_{c}^{2}+13 s_{c}\right)=36 B^{2} \\
& \Leftrightarrow\left(2 s_{c}+13\right)^{2}=4 B^{2}+169 \\
& \Leftrightarrow\left(2 t_{c}\right)^{2}-(2 B)^{2}=169
\end{aligned}
$$

d_{1}	d_{2}	$2 t_{c}$	$2 B$	s_{c}	s	a	b	c	F	r	r_{a}	r_{b}	r_{c}
169	1	85	84	36	49	45	40	13	252	$\frac{36}{7}$	63	28	7

2.3. NQE (p is not a perfect square and c is even). .

Let p_{0} be the square-free part of $p=p_{0} p_{1}^{2} \Rightarrow p_{0}\left|F^{2} \Rightarrow p_{0}\right| F \Rightarrow F=p_{0} U$ with $U \in \mathbb{N}$
Let $c_{0}=c / 2$ and $t_{c}=s_{c}+c_{0}$.
After substitutions equation 1 becomes:

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow p_{0} p_{1}^{2}\left(s_{c}^{2}+2 s_{c} c_{0}\right)=p_{0}^{2} U^{2} \\
& \Leftrightarrow p_{1}^{2}\left(s_{c}^{2}+2 s_{c} c_{0}\right)=p_{0} U^{2}
\end{aligned}
$$

Here is $p_{1}^{2} \mid p_{0} U^{2}$ with p_{0} square-free. If q is a prime factor of $\operatorname{gcd}\left(p_{0}, p_{1}\right)$ then p_{1}^{2} must have an even number of factors q en thus $p_{1}^{2} \mid U^{2} \Rightarrow U=p_{1} B$ with $B \in \mathbb{N}$. And the equation becomes now:

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow p_{1}^{2}\left(s_{c}^{2}+2 s_{c} c_{0}\right)=p_{0} p_{1}^{2} B^{2} \\
& \Leftrightarrow s_{c}^{2}+2 s_{c} c_{0}=p_{0} B^{2} \\
& \Leftrightarrow s_{c}^{2}+2 s_{c} c_{0}+c_{0}^{2}=p_{0} B^{2}+c_{0}^{2} \\
& \Leftrightarrow t_{c}^{2}-p_{0} B^{2}=c_{0}^{2}
\end{aligned}
$$

Then $\left(t_{c}, B\right)$ is a solution to the Bhaskara-Pell-equation

$$
\begin{equation*}
\Leftrightarrow X^{2}-p_{0} Y^{2}=c_{0}^{2} \tag{6}
\end{equation*}
$$

This equation has for all the values of p_{0} and c_{0} in the context of this article one or more series of solutions. (See C. 6 on page 8). Let $\alpha=\alpha_{0}+\alpha_{1} \sqrt{p_{0}}=\left(\alpha_{0}, \alpha_{1}\right)$ be the solution to $X^{2}-p_{0} Y^{2}=1$ with $\alpha_{0}, \alpha_{1} \in \mathbb{N}$ and α_{1} minimal. Let $\beta=\beta_{0}+\beta_{1} \sqrt{p_{0}}=\left(\beta_{0}, \beta_{1}\right)$ be a solution to $X^{2}-p_{0} Y^{2}=c_{0}^{2}$. There is allways one such β, namely $\beta=c_{0}$. This gives the series solutions $\pm \beta \alpha^{i}, i \in \mathbb{Z}$. There exist a finite number of such series. Restriction to $X, Y>0$ does not result in a loss of Heron trilaterals according theorem 1.23.

The solution $\left(t_{c}, B\right)=(X, Y)$ to equation 6 gives :

$$
\left\{\begin{array}{rll}
s_{c}=t_{c}-\frac{c}{2} & =\frac{2 t_{c}-c}{2 t_{c}} & =\frac{2 X-c}{2{ }^{2}} \tag{7}\\
s=t_{c}+\frac{c}{2} & =\frac{2 t_{c}+c}{2} & =\frac{2 X^{2}+c}{2} \\
F=p_{0} U & =p_{0} p_{1} B & =p_{0} p_{1} Y \\
r=\frac{F}{s} & =\frac{2 p_{1} p_{1} B}{2 t_{c}+c} & =\frac{2 p_{0} p_{1} Y}{2 X+c}
\end{array}\right.
$$

Example 2.3 nqe with $c=10$ and $p=4 \cdot 6=24$ and so $p_{0}=6, p_{1}=2, s_{a}=4, s_{b}=6$.

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow 24\left(s_{c}^{2}+10 s_{c}\right)=F^{2} \\
& \Leftrightarrow 6 \cdot 2^{2}\left(s_{c}^{2}+10 s_{c}\right)=6^{2} U^{2} \\
& \Leftrightarrow 2^{2}\left(s_{c}^{2}+10 s_{c}\right)=6 U^{2} \Leftrightarrow 2^{2}\left(s_{c}^{2}+10 s_{c}\right)=6 \cdot(2 B)^{2} \\
& \Leftrightarrow s_{c}^{2}+10 s_{c}=6 B^{2} \Leftrightarrow\left(s_{c}^{2}+5\right)^{2}=6 B^{2}+25 \\
& \Leftrightarrow X^{2}-6 Y^{2}=25
\end{aligned}
$$

$5+2 \sqrt{6}$ is the 'smallest' solution to $X^{2}-6 Y^{2}=1$.
$(5,0)$ is solution to $X^{2}-6 Y^{2}=25$
One of the series of solutions is $\pm 5(5+2 \sqrt{6})^{i}$, starting with $\pm(25+10 \sqrt{6}), \pm(245+$ $100 \sqrt{6}), \cdots, \pm(25-10 \sqrt{6}), \cdots$. From this series follows with positive X, Y :

$X=t_{c}$	$Y=B$	s_{c}	s	a	b	c	F	r	r_{a}	r_{b}	r_{c}
25	10	20	30	26	24	10	120	4	230	20	6
245	100	240	250	1200	246	244	10	$\frac{24}{5}$	300	200	5

2.4. NQO (p is not a perfect square and c is odd). .

Let p_{0} be the square-free part of $p=p_{0} p_{1}^{2} \Rightarrow p_{0}\left|F^{2} \Rightarrow p_{0}\right| F \Rightarrow F=p_{0} U$ with $U \in \mathbb{N}$ So the equation 1 becomes:

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow p_{0} p_{1}^{2}\left(s_{c}^{2}+s_{c} c\right)=p_{0}^{2} U^{2} \\
& \Leftrightarrow p_{1}^{2}\left(s_{c}^{2}+s_{c} c\right)=p_{0} U^{2}
\end{aligned}
$$

Here is $p_{1}^{2} \mid p_{0} U^{2}$ with p_{0} square-free. If q is a prime factor of $\operatorname{gcd}\left(p_{0}, p_{1}\right)$ then p_{1}^{2} must have an even number of factors q en thus $p_{1}^{2} \mid U^{2} \Rightarrow U=p_{1} B$ with $B \in \mathbb{N}$. c is odd $\Rightarrow 2 t_{c}=2 s_{c}+c$ is odd too.
And the equation 1 becomes:

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow p_{1}^{2}\left(s_{c}^{2}+s_{c} c\right)=p_{0} p_{1}^{2} B^{2} \\
& \Leftrightarrow s_{c}^{2}+s_{c} c=p_{0} B^{2} \\
& \Leftrightarrow 4 s_{c}^{2}+4 s_{c} c=4 p_{0} B^{2} \\
& \Leftrightarrow 4 s_{c}^{2}+4 s_{c} c+c^{2}=4 p_{0} B^{2}+c^{2} \Leftrightarrow\left(2 t_{c}\right)^{2}=p_{0}(2 B)^{2}+c^{2} \\
& \Leftrightarrow\left(2 t_{c}\right)^{2}-p_{2} B^{2}=c^{2}
\end{aligned}
$$

With $p_{2}=4 p_{0}$.
Then $\left(2 t_{c}, B\right)$ is a solution of the Bhaskara-Pell-equation

$$
\begin{equation*}
X^{2}-p_{2} Y^{2}=c^{2} \tag{8}
\end{equation*}
$$

This equation has for all the values of p_{2} and c in the context of this article one or more series of solutions. (See C. 6 on page 8). Let $\alpha=\alpha_{0}+\alpha_{1} \sqrt{p_{0}}=\left(\alpha_{0}, \alpha_{1}\right)$ be the solution to $X^{2}-p_{2} Y^{2}=1$ with $\alpha_{0}, \alpha_{1} \in \mathbb{N}$ and α_{1} minimal. Let $\beta=\beta_{0}+\beta_{1} \sqrt{p_{0}}=\left(\beta_{0}, \beta_{1}\right)$ be a solution to $X^{2}-p_{0} Y^{2}=c^{2}$. There is allways one such β, namely $\beta=c$. This gives the series solutions $\pm \beta \alpha^{i}, i \in \mathbb{Z}$. There exist an finite number of such series.
The solution $(X, Y)=\left(2 t_{c}, B\right)$ to equation 8 gives :
The solution $\left(t_{c}, B\right)$ gives :

$$
\left\{\begin{array}{cll}
s_{c}=t_{c}-\frac{c}{2} & =\frac{2 t_{c}-c}{}=\frac{X-c}{2 t_{1}} & =\frac{X}{2} \tag{9}\\
s=t_{c}+\frac{c}{2} & =\frac{2 c_{c}+c}{2} & =\frac{X+c}{2} \\
F=p_{0} U & =p_{0} p_{1} B & =p_{0} p_{1} Y \\
r=\frac{F}{s} & =\frac{2 p_{o} p_{B} B}{2 t_{c}+c} & =\frac{2 p_{0} p_{1} Y}{X+c}
\end{array}\right.
$$

Example 2.4a nqo with $c=9$ and $p=3 \cdot 6=18$ and so $s_{a}=3, s_{b}=6, p_{0}=2, p_{1}=3$.

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow 18\left(s_{c}^{2}+9 s_{c}\right)=F^{2} \\
& \Leftrightarrow 2 \cdot 3^{2}\left(s_{c}^{2}+9 s_{c}\right)=2^{2} U^{2} \\
& \Leftrightarrow 3^{2}\left(s_{c}^{2}+9 s_{c}\right)=2 U^{2} \Leftrightarrow 3^{2}\left(s_{c}^{2}+9 s_{c}\right)=2 \cdot 3^{2} B^{2} \\
& \Leftrightarrow s_{c}^{2}+9 s_{c}=2 B^{2} \Leftrightarrow 4 s_{c}^{2}+4 \cdot 9 s_{c}+81=8 B^{2}+81 \\
& \Leftrightarrow\left(2 s_{c}+9\right)^{2}-8 B^{2}=81 \Leftrightarrow\left(2 t_{c}\right)^{2}-8 B^{2}=81
\end{aligned}
$$

$3+\sqrt{8}$ is the 'smallest' solution to $X^{2}-8 Y^{2}=1$.
9 is a solution to $X^{2}-8 Y^{2}=81$.
One of the series solutions is $\pm 9(3+\sqrt{8})^{i}$, starting with $27+9 \sqrt{8}, 153+54 \sqrt{8}, \cdots,-9(3-$ $\sqrt{8})=-27+9 \sqrt{8}, \cdots$.
We are interested in solutions with positive B, so we get:

$X=2 t_{c}$	$Y=B$	s_{a}	s_{b}	s_{c}	s	F	a	b	c	r	r_{a}	r_{b}	r_{c}
27	9	3	6	9	18	54	15	12	9	3	18	9	6
153	54	3	6	72	81	324	78	75	9	4	108	54	$\frac{9}{2}$

Example 2.4b nqo with $c=11$ and $p=3 \cdot 8=24$ and so $s_{a}=3, s_{b}=8, p_{0}=6, p_{1}=2$.

$$
\begin{aligned}
p s_{c}\left(s_{c}+c\right)=F^{2} & \Leftrightarrow 24\left(s_{c}^{2}+11 s_{c}\right)=F^{2} \\
& \Leftrightarrow 6 \cdot 2^{2}\left(s_{c}^{2}+11 s_{c}\right)=6^{2} U^{2} \\
& \Leftrightarrow 2^{2}\left(s_{c}^{2}+11 s_{c}\right)=6 U^{2} \Leftrightarrow 2^{2}\left(s_{c}^{2}+11 s_{c}\right)=6 \cdot 2^{2} B^{2} \\
& \Leftrightarrow s_{c}^{2}+11 s_{c}=6 B^{2} \Leftrightarrow 4 s_{c}^{2}+4 \cdot 11 s_{c}+121=24 B^{2}+121 \\
& \Leftrightarrow\left(2 s_{c}+11\right)^{2}-24 B^{2}=121 \Leftrightarrow\left(2 t_{c}\right)^{2}-24 B^{2}=121
\end{aligned}
$$

$5+\sqrt{24}$ is the 'smallest' solution to $X^{2}-24 Y^{2}=1$.
11 is a solution to $X^{2}-24 Y^{2}=121$.
One of the series solutions is $\pm 11(5+\sqrt{24})^{i}$, starting with $55+11 \sqrt{24}, 539+110 \sqrt{24}, \cdots,-11(5-$ $\sqrt{24})=-55+11 \sqrt{24}, \cdots$.
We are interested in solutions with positive B, so we get:

$X=2 t_{c}$	$Y=B$	s_{a}	s_{b}	s_{c}	s	F	a	b	c	r	r_{a}	r_{b}	r_{c}
55	11	3	8	22	33	132	30	25	11	4	44	$\frac{33}{2}$	6
539	110	3	8	264	275	1320	272	267	11	$\frac{24}{5}$	440	165	5

2.5. heron(c, x). .

This subsection is a description of the heroncx (c, x) program with input a Heron skeleton and with output sometimes singular Heron trilaterals of some infinite series of Heron trilaterals.

INPUT-OUTPUT:

- INPUT

aantal = a
(table(heroncx $(c, x))$)
The last two lines of the program contain the input lines. Where c is the length of $A B$ in the skeleton and $x=A C_{0}=s_{a}$, the length of the tangent line from A to the incircle. The desired number of rows of the infinite series can be indicated with the number a.

- OUTPUT A table with a row for each Heron trilateral and a column for the values of r, a, b, c, F, which are the values of the inradius, the length of a, b, c and the area of the triangle. The first a triangles of the infinite series are noted.
STRUCTURE of the program (for the letters A-U see appendix A):
A: Here the program is divided into four parts, corresponding to (B-C)SQE (2.1), (D-E)SQO(2.2), (H-N)NQE(2.3) and (O-T)NQO(2.4) in section 2.
B: Initiation: definition/calculation of c_{0}, p_{1} and the outputlist sol.
C: Divisors of c_{0}^{2}, solution of $t_{c}^{2}-B^{2}=c_{0}^{2} \Leftrightarrow X^{2}-Y^{2}=c_{0}^{2}$ and formatting the ouput.
D: Initiation: definition/calculation of p_{1} and the outputlist sol.
E: Divisors of c^{2}, solution of $\left(2 t_{c}\right)^{2}-(2 B)^{2}=c^{2} \Leftrightarrow X^{2}-Y^{2}=c^{2}$ and formatting the ouput.
F: bhaskara(d). Program to find the 'smallest' solution of the Bhaskara (Pell) equation $x^{2}-d y^{2}=1$ with input d.
G: bhaskara_g(d,g). Program to find the series of solutions of the Bhaskara equation $x^{2}-d y^{2}=n$ with input: (d, n). This part make use of F and an intern list sol of rows. The ouput is a solution as described in theorem C. 3 in at the beginning of this section.
H-I: Start of NQE. Definition/calculation of c_{0}, p, p_{0}, p_{1} and the outputlist sol.
J-M: Some series of solutions from G in the list solu can be the same series. In this part only one of each different series stays in solB.
N : Formatting the ouput.
O-P: Start of NQO. Definition/calculation of $c_{0}, p, p_{0}, p_{1}, p_{2}$ and the outputlist sol.
Q-S: See J-M.
T: Formatting the ouput.
U: Start of the program. Here the input values for number and heroncx must be entered.

3. Observations - Questions - Remarks

3.1. More obtuse-angled than acute-angled trilaterals for small area's. .

Nobody is perfect. I debugged the program and found trilaterals with some of the $a, b, c, F \notin \mathbb{N}$. Debugging was so intense at times that some trilaterals disappeared. I found table 1 of primitive heron triangles up to an area of 396 on wiki $[7$. I decided to complete the debugging by checking if all the triangles from the table on input of 2 (isosceles triangles) or 3 (scalene triangles) skeletons were in the output. I added a column with I (soscele), A (cute), R (ight-angled) and O (btused-angled) triangles. I noticed that there were many more obtuse-angled triangles up to the area of 396.
3.2. $c=a+b$ with $a \cdot b$ is a perfect square. .

DEFINITION: A Heron skeleton with only a finite number of Heron trilaterals is called a singular Heron skeleton.

The corresponding Heron trilaterals have at least one of $s_{a} s_{b}, s_{b} s_{c}$ or $s_{c} s_{a}$ equal to a perfect square. This leads to the question: 'Which numbers c are the sum of two positive numbers a and b such that their product $a \cdot b$ is a perfect square?' See table 2: , the singular Heron skeletons with $c<150$ and p a perfect square. Remark : the first element $(2,1)$ in this table is not a Heron skeleton

Let $n=2^{t} * p_{1}^{a_{1}} * p_{2}^{a_{2}} * \ldots * p_{r}^{a_{r}} * q_{1}^{b_{1}} * q_{2}^{b_{2}} * \ldots * q_{s}^{b_{s}}$ for different p_{i} and q_{j} with $t \geq 0, a_{i} \geq 0, p_{i} \equiv_{4} 1, b_{j} \geq 0, q_{j} \equiv_{4} 3$ for $i=1, \cdots, r ; j=1, \cdots, s$

Some sequences from OEIS:
A000404: Numbers that are the sum of 2 nonzero squares. $n \in A 000404 \Leftrightarrow\left(b_{j} \equiv_{2} 0\right.$ for $\left.j=1, \cdots, s\right) \wedge\left(r>0 \vee t \equiv_{2} 1\right)$
A005843: The nonnegative even numbers: $\mathrm{a}(\mathrm{n})=2 \mathrm{n}$ $t>0$
A004613: Numbers that are divisible only by primes congruent $1 \bmod 4$. $r>0 \wedge t=s=0$
A004614: Numbers that are divisible only by primes congruent $3 \bmod 4$. $s>0 \wedge t=r=0$
A018825: Numbers that are not the sum of 2 nonzero squares.
Complement of A000404.
$n \in A 018825 \Leftrightarrow n \notin A 000404 \Leftrightarrow\left(b_{j} \equiv_{2} 1\right.$ for $\left.j=1, \cdots, s\right) \vee\left(r=0 \wedge t \equiv_{2} 0\right)$
A337140: Numbers n such that n is the sum of two positive integers a and b such that their product $\mathrm{p}=\mathrm{ab}$ equals a perfect square.
$A 005843 \subset A 337140$. Proof $n \in A 005843$ then $n=2 k=k+k$ and $p=k * k$ is a perfect square.
A004613 \subset A337140. Proof $n \in A 004613$ then $n=p_{i} \cdot n_{1}=\left(u^{2}+v^{2}\right) \cdot n_{1}=$ $u^{2} n_{1}+v^{2} n_{1}$ and $p=u^{2} n_{1}+v^{2} n_{1}=\left(u v n_{1}\right)^{2}$ is a perfect square.
$n \in A 337140 \backslash(A 005843 \cup A 004613) \Leftrightarrow n=q_{1}^{b_{1}} * q_{2}^{b_{2}} * \ldots * q_{s}^{b_{s}} \in A 018825$ Let now $n=p_{i} * n_{1}=p_{i} *\left(u^{2}+v\right) \Rightarrow p=p_{i}^{2} u^{2} v$ with v is not square for all $u^{2}<n_{1}$.
3.3. How many singulars for $\left(c, s_{a}\right)$, if $s_{a} s_{b}$ is a perfect square? .

The number of triangles in each skeleton is stated in table 2. It is remarkable that at constant c the number of singular solutions is equal for each possible $\left(s_{a} s_{b}\right)$.

3.4. Are there Heron tirangles, that are singulars to 2 or 3 sides? .

Table 1 lists the number of singular Heron skeletons listed in the column type. The triangle with sides $(8,5,5)$ with type OI-3 is an obtused-angled isoscele triangle with three singular Heron skeletons. The triangle with sides $(41,40,17)$ is acute-angled and has 1 singular Heron skeleton. It is remarkable that for primitive triangles with area up to 396:

- there are no triangles with two singular skeletons.
- there are only three triangles with three singular skeletons.
- Only triangle $(8,5,5)$ has three singular skeletons with only one heron trilateral, each.
3.5. How many series for (\mathbf{c}, \mathbf{p}), when \mathbf{p} is not a perfect square? .

Theorem 3.3 in Conrad's Pell's Equations II [4](See C. 5 on page 8) is basic to this question.
3.6. Some results with heroncx. .

Heroncx $(3,1)$:

r	a	b	c	F
1	5	4	3	6
$\frac{4}{3}$	26	25	3	36
$\frac{7}{5}$	149	148	3	210
$\frac{24}{17}$	866	865	3	1224
$\frac{41}{29}$	5045	5044	3	7134
$\frac{140}{99}$	29402	29401	3	41580
$\frac{239}{169}$	171365	171364	3	242346
..

Figure 6. $\mathcal{H}(5,4,3)$
The first row is the rectangled Heron trilateral $\mathrm{HT}(5,4,3)$.
Some additional values are The second row is the obtuse-angled Heron trilateral $\mathrm{HT}(26,25,3)$.

s	s_{a}	s_{b}	s_{c}	F	r	r_{a}	r_{b}	r_{c}
6	1	2	3	6	1	6	3	2

Some additional values are

s	s_{a}	s_{b}	s_{c}	F	$\frac{4}{3}$	r_{a}	r_{b}	r_{c}
27	1	2	24	36	$\frac{4}{3}$	36	18	$\frac{3}{2}$

3.7. Some strong relations between \mathbf{r} and convergents of $\sqrt{s_{a} s_{b}}$. .

In the next table are the series of inradii r and exradii r_{c} compared with the convergents $p_{2}(i) / q_{2}(i)$ from the continued fraction of $\sqrt{2}$.

i	1	2	3	4	5	6	7	\cdots
r	1	$4 / 3$	$7 / 5$	$24 / 17$	$41 / 29$	$140 / 99$	$239 / 169$	\cdots
r_{c}	2	$3 / 2$	$10 / 7$	$17 / 12$	$58 / 41$	$99 / 70$	$338 / 239$	\cdots
$p_{2}(i)$	1	3	7	17	41	99	239	\cdots
$q_{2}(i)$	1	2	5	12	29	70	169	\cdots

It is remarkable that the convergents of $\sqrt{2}$ are alternating the inradius and the exradius at the side c. It seems that

$$
\begin{equation*}
r_{i}=\frac{p_{2}(i)}{q_{2}(i)} \text { if } \mathrm{i} \text { is odd and } r_{i}=\frac{2 \cdot q_{2}(i)}{p_{2}(i)} \text { if } \mathrm{i} \text { is even } \tag{10}
\end{equation*}
$$

Something like equation 11 seems to be valid in many cases. Let $\sqrt{2}$ be replaced by \sqrt{d} en let $p_{d}(i) / q_{d}(i)$ be the $i^{\text {th }}$ convergent from the continued fraction of \sqrt{d}. Then let

$$
\begin{equation*}
r_{i}=\frac{p_{d}(i)}{q_{d}(i)} \text { if } \mathrm{i} \text { is odd and } r_{i}=\frac{d \cdot q_{d}(i)}{p_{d}(i)} \text { if } \mathrm{i} \text { is even } \tag{11}
\end{equation*}
$$

is true for $i=1,2,3$ when $(c, p)=(c, d)=\left(c, s_{a}, s_{b}, d\right)$ as in the following table:

c	3	4	6	6	7	7	7	8	9	9	11	11	11	12	\cdots
s_{a}	1	1	1	2	1	2	3	3	1	4	1	3	5	1	\cdots
s_{b}	2	3	5	4	6	5	4	5	8	5	10	8	6	11	\cdots
d	2	3	5	8	6	10	12	15	8	20	10	24	30	11	\cdots

Much more of this has been collected in table 3. It is checked for $k=1, \cdots 4$. For several series of solutions, only the basic series belonging to β is c_{0} or c is stated. Convergents also occur irregularly in the 'higher' series (not listed in the table, but marked with nqo* or nqe*).

3.8. heroncx $(\mathbf{5 0 , 7})$. .

$\left(c, s_{a}\right)=(50,7)$ gives $d=p=7 \cdot 43=301$ and $n=c_{0}^{2}=625$
bhaskara(301) gives $5883392537695^{2}-301 \cdot 339113108232^{2}=1$.
$u=5883392537695+339113108232 \sqrt{301}$
Then follows the estimated value of ymax in bhaskara $_{g}(d, n)=$ bhaskara $_{g}\left(301,25^{2}\right)$
$y \max =\sqrt{n \cdot u} / \sqrt{301}=4.94294378511965 \mathrm{e} 6$
and bhaskara has to check up to 49429437.
And this takes too much time for my solution with sagemath.

References

[1] L’ubomíra Balková, Aranka Hrušková, Continued Fractions of Quadratic Numbers, https://arxiv. org/pdf/1302.0521.pdf, 5 Feb 2013
[2] Jahnavi Bhaskar, Sum of two squares, https://www.math.uchicago.edu/~may/VIGRE/VIGRE2008/ REUPapers/Bhaskar.pdf
[3] Keith Conrad, Pell's Equations I, https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn1. pdf
[4] Keith Conrad, Pell's Equations II, https://kconrad.math.uconn.edu/blurbs/ugradnumthy/ pelleqn2.pdf
[5] L.M. Hugenholz, De geschiedenis van de vergelijking van Pell, https://www.universiteitleiden.nl/ binaries/content/assets/science/mi/scripties/hugenholtz.pdf
[6] H. W. Lenstra Jr., Solving the Pell Equation, http://www.math.leidenuniv.nl/~psh/ANTproc/ 01lenstra.pdf, feb 2002
[7] Wiki, Heronian triangle, https://en.m.wikipedia.org/wiki/Heronian_triangle
[8] Hein van Winkel, A337140, https://oeis.org/A337140
[9] Wiki, Heronian tetrahedron https://en.wikipedia.org/wiki/Heronian_tetrahedron
\#A Version 2.0 Actual program consists of 4 seperate parts.
def heroncx (hc,hx):
$h p=h x *(h c-h x)$
if is_square(hp):
if hc \% $2==0$:
return sqe(hc,hx)
return sqo(hc,hx)
if hc \% $2==0$:
return nqe (hc, hx)
return nqo(hc,hx)
\#B c:even, p:perfect square $B^{\wedge} 2-A^{\wedge} 2=-c 0^{\wedge} 2=>s_{-} c=A-c 0$ and $F=p 1 * B$
def sqe(c,s_a):
sol $=$ [['r','a', 'b','c', 'F'] $]$
$s_{-} b=c-s_{-} a$
$p=s_{-} a * s_{-} b$
$\mathrm{c} 0=\mathrm{c} / 2$
$\mathrm{p} 1=\operatorname{sqrt}(\mathrm{p})$
\#C d1 > -d2 > $0, \mathrm{~d} 1 * \mathrm{~d} 2=-\mathrm{c} 0^{\wedge} 2,2 \mid(\mathrm{d} 1-\mathrm{d} 2)$
cOdi $=$ divisors (c0^2)
for d1 in cOdi:
if $d 1>c 0:$
$d 2=-c 0^{\wedge} 2 / d 1$
if (d1 - d2) \% 2 == 0 :
$B=(d 1+d 2) / 2$
$A=(d 1-d 2) / 2$
$\mathrm{s}_{-} \mathrm{c}=\mathrm{A}-\mathrm{c} 0$
$s=A+c 0$
$\mathrm{F}=\mathrm{p} 1 * B$
$r=F / s$
$\mathrm{a}=\mathrm{s}_{-} \mathrm{b}+\mathrm{s}_{-} \mathrm{c}$
$\mathrm{b}=\mathrm{s}_{-} \mathrm{a}+\mathrm{s}$ _c
sol.append([r,a,b, c, F])
return sol
\#D c:odd, p:perfect square $B^{\prime} \wedge 2-A^{\prime}{ }^{\prime} 2=c^{\wedge} 2 \Rightarrow s_{-} c=\left(A^{\prime}-c\right) / 2$ and $F=p 1 * B^{\prime} / 2$
def sqo(c,s_a):
sol $=$ [['r','a', 'b','c', 'F'] $]$
s_b = c - s_a
$p=s_{-} a * s_{-} b$
$\mathrm{p} 1=\operatorname{sqrt}(\mathrm{p})$
\#E d1 > -d2 > 0, d1*d2 = -c^2, 2|(d1-d2)
cdi $=$ divisors $\left(c^{\wedge} 2\right)$
for $d 1$ in cdi:
if $\mathrm{d} 1>\mathrm{c}$:
$\mathrm{d} 2=-\mathrm{c}^{\wedge} 2 / \mathrm{d} 1$
if (d1 - d2) $\% 2==0$:
$B 1=(d 1+d 2) / 2$
$\mathrm{A} 1=(\mathrm{d} 1-\mathrm{d} 2) / 2$
$s_{-} c=(A 1-c) / 2$
$\mathrm{s}=(\mathrm{A} 1+\mathrm{c}) / 2$
$\mathrm{F}=\mathrm{p} 1 * \mathrm{~B} 1 / 2$
$r=F / s$
$\mathrm{a}=\mathrm{s}_{-} \mathrm{b}+\mathrm{s}_{-} \mathrm{c}$
$\mathrm{b}=\mathrm{s}_{-} \mathrm{a}+\mathrm{s}_{-} \mathrm{c}$
sol. append ([r, a, b, c, F])
return sol
\#F $x^{\wedge} 2-d y \wedge 2=1$ input d output (a, b) smallest solution in pos.integers
def bhaskara(d):
if is_square(d): return 'none'
k.<sqd> = QuadraticField(d)
cfd = continued_fraction(sqd)
i $=0$
$\mathrm{a}=0$
$\mathrm{b}=0$
while $\mathrm{a}^{\wedge} 2-\mathrm{d} * \mathrm{~b}^{\wedge} 2$! $=1$:
i = i + 1
$\mathrm{cvd}=\mathrm{cfd}$.convergent(i)
$\mathrm{a}=$ numerator (cvd)
$\mathrm{b}=$ denominator (cvd)
return (a, b)
\#G $x^{\wedge} 2-d * y \wedge 2=n$ input d, n output $s o l=$ list van lists of solutions (a+b*sqd) with $b>0$ def bhaskara_g(d,n):
if is_square(d):
return 'none'
k.<sqdn> = QuadraticField(d)
cfdn = continued_fraction(sqdn)
ab = bhaskara(d)
$u=a b[0]+a b[1] *$ sqdn
ymax $=\operatorname{sqrt}(n * u) / s q d n$
sol $=[\mathrm{d},(\mathrm{ab}[0], \mathrm{ab}[1])]$
$Y Y=0$
while $Y Y$ <= floor (ymax):
$X X=\operatorname{sqrt}\left(d * Y Y^{\wedge} 2+n\right)$
if $X X$ in $Z Z:$
sol.append ([XX,YY])

HERON TRILATERALS

```
    YY = YY + 1
    return sol
#H 1.3 A^2 - p0 B^2 = c0^2 ==> s_c = A - c0 and F = p0 p1 B
def nqe(c,s_a):
#I Calculation of p, p0, p1, c0
    sol = [['r','a','b','c','F']]
    c0 = c/2
    s_b = c - s_a
    p = s_a * s_b
    p0 = squarefree_part(p)
    p1 = sqrt(p/p0)
#J quotients of solutions of bhaskara_g can be a bhaskara-unit.
    solu = bhaskara_g(p0,c0^2)
#K print (solu)
    k.<sq> = QuadraticField(p0)
    u = solu[1][0]+solu[1][1]*sq
    solv = []
    for j in range(2,len(solu)):
        solv.append(solu[j][0]+solu[j] [1]*sq)
        solB = [solv[0]]
#L
    j = 1
    while j < len(solv):
        kk = 0
        test = 1
        while kk < len(solB):
            soltest = solv[j]/solB[kk]
            if soltest[0] in ZZ and soltest[1] in ZZ:
                test = 0
            kk = kk + 1
        if test == 1: solB.append(solv[j])
        j = j + 1
#M hier is solB de
    lenB = len(solB)
    for i in range(lenB):
        testB = solB[i]
        if testB in ZZ: solB[i] = u * solB[i]
        if not testB in ZZ:
            while testB[1] > 0:
                testB = testB/u
            solB[i] = testB * u
#N
    for a in solB:
```

```
    so = [a*u^i for i in range(aantal)]
        for a1 in so:
    if a1[1] > 0:
        s_c = a1[0] - c/2
        s = a1[0] + c/2
        F = sqrt(s*s_a*s_b*s_c)
        r = F/s
        a = s_b + s_c
        b = s_a + s_c
        sol.append([r,a,b,c,F])
    if a1[1] < 0:
        s_c = -a1[0] - c/2
        s = -a1[0] + c/2
        F = sqrt(s*s_a*s_b*s_c)
        r = F/s
        a = s_b + s_c
        b = s_a + s_c
        sol.append([r,a,b,c,F])
        sol.append(['..','..','..','..','..'])
    return sol
#O 1.4 A^2 - p2 B^2 = c^2 ==> s_c = (A - c)/2 and F = p0 p1 B /2
def nqo(c,s_a):
    sol = [['r','a','b','c','F']]
#P Calculation of p, p0, p1
    s_b = c - s_a
    p = s_a * s_b
    p0 = squarefree_part(p)
    p2 = 4 * p0
    p1 = sqrt(p/p0)
#Q
    solu = bhaskara_g(p2,c^2)
#K print (solu)
    k.<sq> = QuadraticField(p2)
    u = solu[1][0]+solu[1][1]*sq
    solv = []
    for j in range(2,len(solu)):
        solv.append(solu[j][0]+solu[j][1]*sq)
#R
    solB = [solv[0]]
    j = 1
    while j < len(solv):
        kk = 0
        test = 1
```

HERON TRILATERALS

```
    while kk < len(solB):
        soltest = solv[j]/solB[kk]
        if soltest[0] in ZZ and soltest[1] in ZZ:
            test = 0
        kk = kk + 1
        if test == 1: solB.append(solv[j])
        j = j + 1
#S
    lenB = len(solB)
    for i in range(lenB):
        testB = solB[i]
        if testB in ZZ: solB[i] = u * solB[i]
        if not testB in ZZ:
            while testB[1] > 0:
                    testB = testB/u
    solB[i] = testB * u
#T
    for a in solB:
        so = [a * u^i for i in range(aantal)]
        for a1 in so:
            if a1[1] > 0:
                s_c = (a1[0] - c)/2
                s = (a1[0] + c)/2
                F = sqrt(s*s_a*s_b*s_c)
                r = F/s
                a = s_b + s_c
                b = s_a + s_c
                sol.append([r,a,b, c, F])
        if a1[1] < 0:
            s_c = -(a1[0] - c)/2
            s = - (a1[0] + c)/2
            F = sqrt(s*s_a*s_b*s_c)
            r = F/s
            a = s_b + s_c
            b = s_a + s_c
            sol.append([r,a,b,c,F])
    sol.append(['..','..','..','..','..'])
    return sol
#U
aantal = var('aantal')
aantal = a
(table(heroncx(c,x)))
```

Appendix B. tables
Table 1. Primitive Heron triangles up to area (F) is 396

F	2s	c	b	a	r	typ	F	2s		b	a	r	type
6	12	5	4	3	1	R-0	204	68	26	25	17	6	A-0
12	16	6	5	5	$\frac{3}{2}$	AI-1	210	70	29	21	20	6	R-0
12	18	8	5	5	$\frac{4}{3}$	OI-3	210	70	28	25	17	6	A-0
24	32	15	13	4	$\frac{3}{2}$	O-1	210	84	39	28	17	5	-0
30	30	13	12	5	2	R-0	210	84	37	35	12	5	R-0
36	36	17	10	9	2	-1	210	140	68	65	7	3	-0
36	54	26	25	3	$\frac{4}{3}$	O-0	210	300	149	148	3	7	O-0
42	42	20	15	7	2	O-0	216	162	80	73	9	8	O-1
60	36	13	13	10	$\frac{10}{3}$	AI-1	234	108	52	41	15	54	O-0
60	40	17	15	8	3	-1	240	90	40	37	13		O-1
60	50	24	13	13	$\frac{12}{5}$	OI-1	252	84	35	34	15	6	A-0
60	60	29	25	6	${ }_{2}^{5}$	O-0	252	98	45	40	13	$\frac{36}{7}$	O-3
66	44	20	13	11	3	O-0	252	144	70	65	9		O-1
72	64	30	29	5	4	-0	264	96	44	37	15	$\frac{11}{2}$	O-0
84	42	15	14	13	4	A-0	264	132	65	34	33	4	O-0
84	48	21	17	10	$\frac{7}{2}$	O-0	270	108	52	29	27	5	O-0
84	56	25	24	7	3	R-0	288	162	80	65	17	$\frac{32}{9}$	O-3
84	72	35	29	8	$\frac{7}{3}$	O-1	300	150	74	51	25	9	O-0
90	54	25	17	12	$\frac{10}{3}$	O-0	300	250	123	122	5	$\frac{12}{5}$	O-0
90	108	53	51	4		O-0	306	108	51	37	20	$\frac{17}{3}$	O-0
114	76	37	20	19	3	O-0	330	100	44	39	17	5	O-0
120	50	17	17	16	$\frac{24}{5}$	I-1	330	110	52	33	25	6	O-0
120	64	30	17	17	-	OI-1	330	132	61	60	11	5	R-0
120	80	39	25	16	3	O-0	330	220	109	100	11	3	-0
126	54	21	20	13	$\frac{14}{3}$	A-0	336	98	41	40	17	7	A-1
126	84	41	28	15	3	O-0	336	112	53	35	24	6	-0
12	108	52	51	5	$\overline{3}$	O-0	336	128	61	52	15	8	-1
132	66	30	25	11	4	-0	336	392	195	193	4	$\frac{12}{7}$	O-1
15	78	37	26	15	4	-0	360	90	36	29	25	8	A-1
156	104	51	40	13	3	O-0	360	100	41	41	18	36	AI-1
168	64	25	25	14	$\frac{21}{4}$	AI-1	360	162	80	41	41	9	OI-1
168	84	39	35	10	4	O-0	390	156	75	68	13	5	-0
168	98	48	25	25	$\frac{12}{7}$	O-1	396	176	87	55	34	$\frac{9}{2}$	-0
180	80	37	30	13	$\frac{9}{2}$	O-1	396	198	97	90	11	,	O-0
180	90	41	40	9	4	R-1	396	242	120	109	13	$\frac{18}{11}$	O-1
188	132	65	55	12	$\frac{9}{2}$	O-0							

HERON TRILATERALS BHASKARA EQUATIONS CONTINUED FRACTIONS 1
TABLE 2. $(c, a)-n$ with $c=a+b$ with $a * b$ is square $(a, b, c \in \mathbb{N})$ and n is the number of singular Heron trilaterals

$(2,1)-0$	$(36,18)-2$	$(65,1)-4$	$(88,44)-4$	$(113,49)-1$
$(4,2)-0$	$(37,1)-1$	$(65,13)-4$	$(89,25)-1$	$(114,57)-4$
$(5,1)-1$	$(38,19)-1$	$(65,16)-4$	$(90,9)-7$	$(115,23)-4$
$(6,3)-1$	$(39,12)-4$	$(65,20)-4$	$(90,18)-7$	$(116,16)-1$
$(8,4)-1$	$(40,4)-4$	$(66,33)-4$	$(90,45)-7$	$(116,18)-1$
$(10,1)-1$	$(40,8)-4$	$(68,4)-1$	$(91,28)-4$	$(116,58)-1$
$(10,2)-1$	$(40,20)-4$	$(68,18)-1$	$(92,46)-1$	$(117,36)-7$
$(10,5)-1$	$(41,16)-1$	$(68,34)-1$	$(94,47)-1$	$(118,59)-1$
$(12,6)-1$	$(42,21)-4$	$(70,7)-4$	$(95,19)-4$	$(119,7)-4$
$(13,4)-1$	$(44,22)-1$	$(70,14)-4$	$(96,48)-10$	$(120,12)-13$
$(14,7)-1$	$(45,9)-7$	$(70,35)-4$	$(97,16)-1$	$(120,24)-13$
$(15,3)-4$	$(46,23)-1$	$(72,36)-7$	$(98,49)-2$	$(120,60)-13$
$(16,8)-2$	$(48,24)-7$	$(73,9)-1$	$(100,2)-2$	$(122,1)-1$
$(17,1)-1$	$(50,1)-2$	$(74,2)-1$	$(100,10)-2$	$(122,50)-1$
$(18,9)-2$	$(50,5)-2$	$(74,25)-1$	$(100,20)-2$	$(122,61)-1$
$(20,2)-1$	$(50,10)-2$	$(74,37)-1$	$(100,36)-2$	$(123,48)-4$
$(20,4)-1$	$(50,18)-2$	$(75,15)-7$	$(100,50)-2$	$(124,62)-1$
$(20,10)-1$	$(50,25)-2$	$(75,27)-7$	$(101,1)-1$	$(125,4)-3$
$(22,11)-1$	$(51,3)-4$	$(76,38)-1$	$(102,6)-4$	$(125,25)-3$
$(24,12)-4$	$(52,2)-1$	$(78,3)-4$	$(102,27)-4$	$(125,45)-3$
$(25,5)-2$	$(52,16)-1$	$(78,24)-4$	$(102,51)-4$	$(126,63)-7$
$(25,9)-2$	$(52,26)-1$	$(78,39)-4$	$(104,4)-4$	$(128,64)-5$
$(26,1)-1$	$(53,4)-1$	$(80,8)-7$	(104, 32) - 4	$(130,2)-4$
$(26,8)-1$	$(54,27)-3$	$(80,16)-7$	$(104,52)-4$	$(130,5)-4$
$(26,13)-1$	$(55,11)-4$	$(80,40)-7$	$(105,21)-13$	$(130,9)-4$
$(28,14)-1$	$(56,28)-4$	$(82,1)-1$	$(106,8)-1$	$(130,13)-4$
$(29,4)-1$	$(58,8)-1$	$(82,32)-1$	$(106,25)-1$	$(130,26)-4$
$(30,3)-4$	$(58,9)-1$	$(82,41)-1$	$(106,53)-1$	$(130,32)-4$
$(30,6)-4$	$(58,29)-1$	$(84,42)-4$	$(108,54)-3$	$(130,40)-4$
$(30,15)-4$	$(60,6)-4$	$(85,4)-4$	$(109,9)-1$	$(130,49)-4$
$(32,16)-3$	$(60,12)-4$	$(85,5)-4$	$(110,11)-4$	$(130,65)-4$
$(34,2)-1$	$(60,30)-4$	$(85,17)-4$	$(110,22)-4$	$(132,66)-4$
$(34,9)-1$	$(61,25)-1$	$(85,36)-4$	$(110,55)-4$	$(134,67)-1$
$(34,17)-1$	$(62,31)-1$	$(86,43)-1$	$(111,3)-4$	$(135,27)-10$
$(35,7)-4$	$(64,32)-4$	$(87,12)-12$	$(112,56)-7$	$(136,8)-4$

TABLE 3. $n q x-c-s_{a}-s_{b}-p-r_{i}$

nqx	c	s_{a}	s_{b}	d	r_{i}
nqo	3	1	2	2	$r_{2 k-1}=p_{2}(2 k-1) / q_{2}(2 k-1), r_{2 k}=2 \cdot q_{2}(2 k) / p_{2}(2 k)$
nqe	4	1	3	3	$r_{2 k-1}=p_{3}(2 k-1) / q_{3}(2 k-1), r_{2 k}=3 \cdot q_{3}(2 k) / p_{3}(2 k)$
nqo*	5	2	3	6	$r_{2 k-1}=p_{6}(2 k-1) / q_{6}(2 k-1), r_{2 k}=6 \cdot q_{6}(2 k) / p_{6}(2 k)$
nqe	6	1	5	5	$r_{2 k-1}=p_{5}(2 k-1) / q_{5}(2 k-1), r_{2 k}=5 \cdot q_{5}(2 k) / p_{5}(2 k)$
nqe	6	2	4	8	$r_{2 k-1}=p_{8}(2 k-1) / q_{8}(2 k-1), r_{2 k}=8 \cdot q_{8}(2 k) / p_{8}(2 k)$
nqe	6	2	4	8	$r_{2 k-1}=2 \cdot p_{2}(2 k-1) / q_{2}(2 k-1), r_{2 k}=2 \cdot 2 \cdot q_{2}(2 k) / p_{2}(2 k)$
nqo	7	1	6	6	$r_{2 k-1}=p_{6}(2 k-1) / q_{6}(2 k-1), r_{2 k}=6 \cdot q_{6}(2 k) / p_{6}(2 k)$
nqo	7	3	4	12	$r_{2 k-1}=p_{12}(2 k-1) / q_{12}(2 k-1), r_{2 k}=12 \cdot q_{12}(2 k) / p_{12}(2 k)$
nqo	7	3	4	12	$r_{2 k-1}=2 \cdot p_{3}(2 k) / q_{3}(2 k), r_{2 k}=2 \cdot 3 \cdot q_{3}(4 k) / p_{3}(4 k)$
nqo	7	2	5	10	$r_{2 k-1}=p_{10}(2 k-1) / q_{10}(2 k-1), r_{2 k}=10 \cdot q_{10}(2 k) / p_{10}(2 k)$
nqe	8	1	7	7	$r_{i}=7 \cdot q_{7}(2 i) / p_{7}(2 i)$
nqe	8	2	6	12	$r_{2 k-1}=2 \cdot p_{3}(2 k-1) / q_{3}(2 k-1), r_{2 k}=2 \cdot 3 \cdot q_{3}(2 k) / p_{3}(2 k)$
nqe	8	3	5	15	$r_{2 k-1}=p_{15}(2 k-1) / q_{15}(2 k-1), r_{2 k}=15 \cdot q_{15}(2 k) / p_{15}(2 k)$
nqo	9	1	8	8	$r_{2 k-1}=p_{8}(2 k-1) / q_{8}(2 k-1), r_{2 k}=8 \cdot q_{8}(2 k) / p_{8}(2 k)$
nqo	9	1	8	8	$r_{2 k-1}=2 \cdot p_{2}(2 k-1) / q_{2}(2 k-1), r_{2 k}=2 \cdot 2 \cdot q_{2}(2 k) / p_{2}(2 k)$
nqo	9	2	7	14	$r_{i}=14 \cdot q_{14}(2 i) / p_{14}(2 i)$
nqo	9	3	6	18	$r_{2 k-1}=3 \cdot p_{2}(2 k-1) / q_{2}(2 k-1), r_{2 k}=3 \cdot 2 \cdot q_{2}(2 k) / p_{2}(2 k)$
nqo	9	4	5	20	$r_{2 k-1}=p_{20}(2 k-1) / q_{20}(2 k-1), r_{2 k}=20 \cdot q_{20}(2 k) / p_{20}(2 k)$
nqo	9	4	5	20	$r_{2 k-1}=2 \cdot p_{5}(2 k-1) / q_{5}(2 k-1), r_{2 k}=2 \cdot 5 \cdot q_{5}(2 k) / p_{5}(2 k)$
nqe*	10	3	7	21	$r_{2 k-1}=p_{21}(6 k-3) / q_{21}(6 k-3), r_{2 k}=21 \cdot q_{21}(6 k) / p_{21}(6 k)$
nqe	10	4	6	24	$r_{2 k-1}=p_{24}(2 k-1) / q_{24}(2 k-1), r_{2 k}=24 \cdot q_{24}(2 k) / p_{24}(2 k)$
nqe	10	4	6	24	$r_{2 k-1}=2 \cdot p_{6}(2 k-1) / q_{6}(2 k-1), r_{2 k}=2 \cdot 6 \cdot q_{6}(2 k) / p_{6}(2 k)$
nqo	11	1	10	10	$r_{2 k-1}=p_{10}(2 k-1) / q_{10}(2 k-1), r_{2 k}=10 \cdot q_{10}(2 k) / p_{10}(2 k)$
nqo	11	2	9	18	$r_{2 k-1}=3 \cdot p_{2}(2 k-1) / q_{2}(2 k-1), r_{2 k}=3 \cdot 2 \cdot q_{2}(2 k) / p_{2}(2 k)$
nqo	11	3	8	24	$r_{2 k-1}=p_{24}(2 k-1) / q_{24}(2 k-1), r_{2 k}=24 \cdot q_{24}(2 k) / p_{24}(2 k)$
nqo	11	3	8	24	$r_{2 k-1}=2 \cdot p_{6}(2 k-1) / q_{6}(2 k-1), r_{2 k}=2 \cdot 6 \cdot q_{6}(2 k) / p_{6}(2 k)$
nqo	11	4	7	28	$r_{i}=28 \cdot 28 q_{28}(2 i) / p_{28}(2 i)$
nqo	11	4	7	28	$r_{i}=2 \cdot 7 \cdot q_{7}(4 i) / p_{7}(4 i)$
nqo	11	5	6	30	$r_{2 k-1}=p_{30}(2 k-1) / q_{30}(2 k-1), r_{2 k}=30 \cdot q_{30}(2 k) / p_{30}(2 k)$
nqo	12	1	11	11	$r_{2 k-1}=p_{11}(2 k-1) / q_{11}(2 k-1), r_{2 k}=11 \cdot q_{11}(2 k) / p_{11}(2 k)$
nqe*	12	2	10	20	$r_{2 k-1}=p_{20}(2 k-1) / q_{20}(2 k-1), r_{2 k}=20 \cdot q_{20}(2 k) / p_{20}(2 k)$
nqe*	12	2	10	20	$r_{2 k-1}=2 \cdot p_{5}(2 k-1) / q_{5}(2 k-1), r_{2 k}=2 \cdot 5 \cdot q_{5}(2 k) / p_{5}(2 k)$
nqe	12	3	9	27	$r_{2 k-1}=p_{27}(2 k-1) / q_{27}(2 k-1), r_{2 k}=27 \cdot q_{27}(2 k) / p_{27}(2 k)$
nqe	12	3	9	27	$r_{2 k-1}=3 \cdot p_{3}(6 k-3) / q_{3}(6 k-3), r_{2 k}=3 \cdot 3 \cdot q_{3}(6 k) / p_{3}(6 k)$
nqe	12	4	8	32	$r_{2 k-1}=$? $?$
nqe	12	4	8	32	$\left.\left.r_{2 k}=32 \cdot q_{32}(2 k) / p_{32}(2 k)=2 \cdot 8 \cdot q_{8}(2 k) / p_{8}(2 k)\right)=4 \cdot 2 \cdot q_{2}(2 k) / p_{2}(2 k)\right)$
nqo	12	5	7	35	$r_{2 k-1}=p_{35}(2 k-1) / q_{35}(2 k-1), r_{2 k}=35 \cdot q_{35}(2 k) / p_{35}(2 k)$

