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Abstract

Some Q-configurations related to the Arbelos. I have let me inspire
for this article by Harold P. Boas: ’Reflections on the Arbelos’ ; The
Mathematical association of America (Monthly 113 March 2006). In
the first three sections I present some basic information with nice
Q–configurations on the arbelos. In the fourth sections the chain of
Pappos with some thoughts of Jakob Steiner leads to formulas for π.
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1 Circumference and area of the arbelos

Figure 1: The arbelos

The arbelos consists of three halfcircles, tangent to each other. The point C
in figure 1 lies on the linesegment AB. To get Q-configurations w’ll choose
for an half unit-circle and rationals for the linesegments AC and BC.

Some notations and other that we will use in this paper.
The diameter of the half-circle AB is 2, the midpoint O.
The diameters of the half-cicles AC and BC are respectively 2a and 2b and
their midpoints M and N . Remark: a+ b = 1.
The ratio AC

BC
will be ρ = a

b
= a

1−a = 1−b
b

.
Coordinates of the points on the diameter AB in a, b and ρ :

A(−1, 0), B(1, 0), O(0, 0)

M(−1 + a, 0) = (−b, 0) =

(
− 1

ρ+ 1
, 0

)
N(a, 0) = (1− b, 0) =

(
ρ

ρ+ 1
, 0

)
C(−1 + 2a, 0) = (1− 2b, 0) =

(
ρ− 1

ρ+ 1
, 0

)
Circumference of the arbelos equals arcAB + arcBC + arcAC =
1
2
(2π + 2πa+ 2πb) = π(1 + a+ b) = 2π

Area of the arbelos 1
2
(π − πa2 − πb2) = 1

2
(π(a+ b)2 − πa2 − πb2) = πab
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Figure 2: An area property of the arbelos

The perpendicular of AB in C intersects the arbelos in the point D.
Proposition.
The area of the arbelos equals the area of the circle with diameter CD.
Proof.
Euclides gives CD2 = AC · CB. And so it follows, that Area of circle with
diameter CD equals
π · 1

4
CD2 = π · 1

4
AC · CB = π · 1

4
· 2a · 2b = πab.

We just found that this is the area of the arbelos.

Figure 3: ABCD as Q-configuration

Now look at the figure of the right-angled 4ABD and let ∠DAB = α and
AB = 2. Then we get:
the linesegments AD = 2 cosα, AC = 2 cos2 α, BD = 2 sinα, BC = 2 sin2 α,
CD = 2 sinα cosα
and the areas 4ACD = 2 sinα cos3 α, 4BCD = 2 sin3 α cosα.
Remark.
a = cos2 α and b = sin2 α We have a Q-configuration for quadratic rationals
a and b.
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In the following table a summery of the formulas, expressed in α, a, and ρ
with the fifth column for cos2 α = a = rho

rho+1
= 16

25
and the last column scaled

up with a factor 25
2

to get the smallest Q-configuration.

AB 2 2 2 2 25

AD 2 cosα 2
√
a 2

√
ρ
ρ+1

8
5

20

AC 2 cos2 α 2a 2ρ
ρ+1

32
25

16

BD 2 sinα 2
√

1− a 2
√

1
ρ+1

6
5

15

BC 2 sin2 α 2(1− a) 2
ρ+1

18
25

9

CD 2 sinα cosα 2
√
a(1− a) 2

ρ+1

√
ρ 24

25
12

ACD 2 sinα cos3 α 2a
√
a(1− a) 4ρ

(ρ+1)2
√
ρ 384

625
96

BCD 2 sin3 α cosα 2(1− a)
√
a(1− a) 4

(ρ+1)2
√
ρ 216

625
54
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2 The inner tangent XY of the arbelos

Figure 4: Q-configuration with tangent XY

DA and DB meet arcAC and arcBC respectively in the points X
and Y . Then CYDX is a rectangle, whose diagonals meet in P . Now
PX = PY = PC and thus XY is tangent to the arcs AC and BC. To find
the formulas of the following table is easy now.

AB 2 2 2 2 125
AC 2 cos2 α 2a 2ρ

ρ+1
32
25

80

AX 2 cos3 α 2 (
√
a)

3
2
(√

ρ
ρ+1

)3
128
125

64

BC 2 sin2 α 2(1− a) 2
ρ+1

18
25

45

BY 2 sin3 α 2
(√

1− a
)3

2
(√

1
ρ+1

)3
54
125

27

CP sinα cosα
√
a(1− a) 1

ρ+1

√
ρ 12

25
30

CX 2 sinα cos2 α 2
√
a(1− a) 2ρ

ρ+1

√
1
ρ+1

96
125

48

CY 2 sin2 α cosα 2a
√
a(1− a) 2

ρ+1

√
ρ
ρ+1

72
125

36

ACX 2 sinα cos5 α 2a2
√
a(1− a) 2ρ2

(ρ+1)3
√
ρ 6144

15625
1536

BCY 2 sin5 α cosα 2(1− a)2
√
a(1− a) 2

(ρ+1)3
√
ρ 1944

15625
486

DPX sin3 α cos3 α
√

(a(1− a))3
√
ρ3

(ρ+1)3
1728
15625

432

As in the preceeding section formula’s in α, a and ρ and in the last column
upscaled to the smallest Q-configuration for the left figure. See next page for
an additional table for the right figure.
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MA = MC = MX cos2 α a ρ
ρ+1

16
25

40

NB = NC = NY sin2 α (1− a) 1
ρ+1

9
25

22,5

PM cosα
√
a

√
ρ
ρ+1

4
5

50

PN sinα
√

1− a
√

1
ρ+1

3
5

37,5

CPM = PXM 1
2

sinα cos3 α 1
2
a
√
a(1− a)

√
ρ3

2(ρ+1)2
96
625

600

CPN = Y PN 1
2

sin3 α cosα 1
2
(1− a)

√
a(1− a)

√
ρ

2(ρ+1)2
54
625

337,5

AXM sinα cos5 α a2
√
a(1− a) ρ2

(ρ+1)3
√
ρ 3072

15625
768

BNY sin5 α cosα (1− a)2
√
a(1− a) 1

(ρ+1)3
√
ρ 972

15625
342

For the smallest Q-configuration there must be an extra upscaling with factor
2 for the linesegments.
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3 The twin circles.

Figure 5: The twin circles

Archimedes found the twin-circles, tangent at the tangent CD and two of
the other half-circles. In almost every paper about circles in the arbelos you
can find the property that the twin circles are congruent.
We look at this property and will see that 4MOU and 4TON are Q-
triangles.

Let r be the radius of the circle with center T . Then we have:
TT 2

1 = OT 2 −OT 2
1 = TN2 −NT 2

1 ⇔
(1− r)2 − (1− 2b+ r)2 = (b+ r)2 − (b− r)2 ⇔ r = b(1− b) = ab
For the left one of the twins we get:
UU2

1 = OU2 −OU2
1 = UM2 −MU2

1 ⇔
(1− r)2 − (2a− 1− r)2 = (a+ r)2 − (a− r)2 ⇔ r = a(1− a) = ab

Proposition.
The circumcenters of a twincircle, and the halfcircles tangent to it form a
Q-triangle, if the lengths of the radii of the halfcircles on AC and BC are
rational.
Proof.
Let us now look for 4TON .
TT 2

1 = (b+ r)2 − (b− r)2 = 4br = 4ab2 gives TT1 = 2b
√
a.

OT1 = 1− 2b+ r = 1− 2b+ b− b2 = 1− b− b2
T (1− b− b2, 2b

√
1− b), N(1− b, 0) and O(0, 0) are the vertices,

ON = 1− b, NT = b(2− b) and OT = 1− b+ b2 are the sidelengths
and Area(4TON) = b(1− b)

√
1− b.

For the left 4MOU we get in the same way:
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UU2
1 = MU2−MU2

1 = (a+ r)2− (a− r)2 = 4ar = 4a2b⇒ UU1 = 2a
√

1− a,
U(−1 + a+ a2, 2a

√
1− a), M(−1 + a, 0) and O(0, 0) are the vertices,

OM = −1 + a, MU = a(2− a) and OU = 1− a+ a2 are the sidelengths
and Area(4MOU) = a(1− a)

√
1− a.

Figure 6: Twin circles and Q-triangles

Remark.
The length of TU is not rational.
Proof.
TU2 = (UU1−TT1)2+(2r)2 = (2a

√
b−2b

√
a)2+4ab = 4ab(a−2

√
ab+b+1) =

8ab(1 +
√
ab) = 8 cos2 α sin2 α(1 +

√
cos2 α sin2 α)

Suppose TU2 be a rational square. Then we have
2(1 + cosα sinα) is a rational square.

⇒ 2 q
2+pr
q2

must be a rational square with p
q

= cosα and r
q

= sinα and

(p, q, r) = 1 .
⇒ q2 + pr = p2 + r2 + pr must be even.
This contradicts (p, q, r) = 1.
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4 Pappos chains and formulas for π

Figure 7: Pythagorean triangles and the Pappos chain

In the arbelos exists a chain of circles, named after the greek mathematician
Pappos. The first circle will be the circle, which is tangent to the three
arbelos-half-circles. It has midpoint N1 and diameter d1 = 2r1. Let the n-th
circle have midpoint Nn and diameter dn = 2rn. Let Nn1 be the pedal of the
perpendicular through Nn on AB.
Pappos has shown, that NnNn1 = ndn.
Steiner has shown by inversion with center A and inversioncircle perpendic-

ular to the n-th circle of the chain, that
ANn1

dn
= AN

BC
=

AC+ 1
2
BC

BC
= AC

BC
+ 1

2
=

ρ+ 1
2
. With ρ = AC

BC
as defined in section 1.

Cartesian coordinates and some computing give Nn(xn, yn) with
– Steiner: xn = ANn1 − 1 = dn(ρ+ 1

2
)− 1 = rn(1 + 2ρ)− 1

– Pappos: yn = 2nrn
– ONn = 1− rn

We now calculate with Pythagoras:

(rn(1 + 2ρ)− 1)2 + (2nrn)2 = (1− rn)2

⇔ (1 + 2ρ)2r2n − 2(1 + 2ρ)rn + 1 + 4n2r2n = r2n − 2rn + 1

⇔ (4n2 − 1 + (1 + 2ρ)2)rn = ρ⇔ rn =
ρ

(n2 + ρ+ ρ2)
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Proposition (a).
When ρ ∈ Q then the points {Nn} has rational coordinates and the polygon
ANN1N2N3...., devided in the triangles ONN1, ON1N2, ...., ONn−1Nn, ...... is
a Q-configuration.
Proof.
For n > 1 we have:

xn = rn(1 + 2ρ)− 1 =
ρ(1 + 2ρ)

n2 + ρ+ ρ2
− 1 =

ρ(1 + 2ρ)− (n2 + ρ+ ρ2)

n2 + ρ+ ρ2
=
−(n2 − ρ2)
n2 + ρ+ ρ2

yn = 2nrn =
2ρn

n2 + ρ+ ρ2

ONn = 1− rn = 1− ρ

n2 + ρ+ ρ2
=

n2 + ρ2

n2 + ρ+ ρ2

NnNn−1 = rn + rn−1 =
ρ

n2 + ρ+ ρ2
+

ρ

(n− 1)2 + ρ+ ρ2

For the area of 4ONnNn−1 we find

An = AONnNn−1 =
1

2
(xn−1yn − xnyn−1)

=
1

2

(
−((n− 1)2 − ρ2)
(n− 1)2 + ρ+ ρ2

2ρn

n2 + ρ+ ρ2
− −(n2 − ρ2)
n2 + ρ+ ρ2)

2ρ(n− 1)

(n− 1)2 + ρ+ ρ2

)
=
ρ((n2 − ρ2)(n− 1)− ((n− 1)2 − ρ2)n)

((n− 1)2 + ρ+ ρ2)(n2 + ρ+ ρ2)

=
ρ(n2 − n+ ρ2)

((n− 1)2 + ρ+ ρ2)(n2 + ρ+ ρ2)
.

Corollary.
When we fix ρ then the formule gives for the area of the polygon
ANN1N2N3....

∞∑
i=1

ρ(i2 − i+ ρ2)

((i− 1)2 + ρ+ ρ2)(i2 + ρ+ ρ2)

And this gives a very slow converging limit

lim
ρ→∞

(
∞∑
i=1

ρ(i2 − i+ ρ2)

((i− 1)2 + ρ+ ρ2)(i2 + ρ+ ρ2)

)
=

1

2
π (1)
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Figure 8: Q-polygon and formula for π

Steiner mentioned another row of pythagorean triangles with vertex M in
stead of O. This leads to

Proposition (b).
When ρ ∈ Q then the points {Nn} has rational coordinates and the polygon
ANN1N2N3...., devided in the triangles MNN1,MN1N2, ....,MNn−1Nn, ......
is a Q-configuration.
Proof.
Let Bn be the area of 4MNnNn−1. As in the proof of proposition (a) we
find:

xn = rn(1 + 2ρ)− 1 =
ρ(1 + 2ρ)

n2 + ρ+ ρ2
− 1 =

ρ(1 + 2ρ)− (n2 + ρ+ ρ2)

n2 + ρ+ ρ2
=
−(n2 − ρ2)
n2 + ρ+ ρ2

yn = 2nrn =
2ρn

n2 + ρ+ ρ2
=

2ρn

n2 + ρ+ ρ2

MNn = a+ rn =
ρ

ρ+ 1
+

ρ

n2 + ρ+ ρ2
=

ρ(n2 + (ρ+ 1)2)

(ρ+ 1)(n2 + ρ+ ρ2)

NnNn−1 = rn + rn−1 =
ρ

n2 + ρ+ ρ2
+

ρ

(n− 1)2 + ρ+ ρ2

Bn = AMNnNn−1 =
1

2
((xn−1 + b)yn − (xn + 1− a)yn−1)

=
1

2

((
−((n− 1)2 − ρ2)
(n− 1)2 + ρ+ ρ2

+
1

ρ+ 1

)
2ρn

n2 + ρ+ ρ2
−
(
−(n2 − ρ2)
n2 + ρ+ ρ2

+
1

ρ+ 1

)
2ρ(n− 1)

(n− 1)2 + ρ+ ρ2

)
=

ρ2(n2 − n+ (ρ+ 1)2)

(ρ+ 1)(n2 + ρ+ ρ2)((n− 1)2 + ρ+ ρ2)
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And we have another very slow converging limit

lim
ρ→∞

(
∞∑
i=1

ρ2(i2 − i+ (ρ+ 1)2)

(ρ+ 1)(i2 + ρ+ ρ2)((i− 1)2 + ρ+ ρ2)

)
=

1

2
π (2)

To give an impression of the very slow speed of convergence of this formula,
I used SAGE to compute with ρ = 2500 the sum of the first 500000 terms of
the series. An approximation of this sum, corrected for the half ellips with
long axis AN gives 3.13284330082914.
Someone, who loves to see very large numbers, can see this uncorrected sum
at http://www.duizendknoop.com/b/pi-arb.pdf

We end this section with a third, less complicated formula for π. The broken
line NN1N2...... has length

L = NN1 +N1N2 + ....... = (b+ r1) + (r1 + r2) + ........ = b+ 2r1 + 2r2 + .....

And so

lim
ρ→∞

(
1

ρ+ 1
+ 2ρ

∞∑
i=1

1

i2 + ρ+ ρ2

)
= π (3)
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